

Aire acondicionado tipo Split

MANUAL DE INSTALACIÓN
AIRE ACONDICIONADO LENNOX

MODELO:

LIAC024-180P431-1

LIAC036-180P431-1

LIAC048-180P431-1

LIAC060-180P431-1

Gracias por elegir Aires Acondicionas LENNOX. Leer atentamente este manual antes de utilizarlo y guardar para futuras consultas.

TODAS LAS ETAPAS DE ESTA INSTALACIÓN DEBEN CUMPLIR CON LOS CÓDIGOS NACIONALES, ESTATALES Y LOCALES

⚠ ADVERTENCIA

IMPORTANTE - Este documento es propiedad del cliente y debe permanecer con esta unidad. Regrese al paquete de información de servicio una vez finalizado el trabajo. Estas instrucciones no cubren todas las variaciones en los sistemas ni contemplan todas las contingencias posibles que deben cumplirse en relación con la instalación. Si desea más información o si aparecen problemas particulares que no están suficientemente cubiertos para los propósitos del comprador debe referirse a su distribuidor de instalación o distribuidor local.

♀ NOTA

El fabricante recomienda instalar solo sistemas combinados interiores y exteriores aprobados. Todos los sistemas Split del fabricante tienen clasificación AHRI solo con sistemas interiores TXV y las unidades interiores deben combinarse con TXV. Algunos beneficios de instalar sistemas interiores y exteriores Split combinados aprobados son la máxima eficiencia, el rendimiento óptimo y la mejor confiabilidad general del sistema.

CONTENIDOS

1 SEGURIDAD	01
2 CONSIDERACIONES DE UBICACIÓN DE LA UNIDAD	
2.1 Dimensiones de la unidad	02
2.2 Límites de tuberías de refrigerante	02
2.3 Restricciones de ubicación	03
3 PREPARACIÓN DE UNIDAD	
3.1 Preparar la unidad para la instalación	04
4 CONFIGURACIÓN DE LA UNIDAD	
4.1 Instalación de plataforma	04
5 CONSIDERACIONES SOBRE LA LÍNEA DE REFRIGERA	NE
5 CONSIDERACIONES SOBRE LA LINEA DE REFRIGERA	MIE
5.1 Tamaños de conexión de la válvula de servicio y la línea	MIE
	05
5.1 Tamaños de conexión de la válvula de servicio y la línea	
5.1 Tamaños de conexión de la válvula de servicio y la línea de refrigerante	05
5.1 Tamaños de conexión de la válvula de servicio y la línea de refrigerante5.2 Longitud Requerida de la Línea de Refrigerante	05 05
5.1 Tamaños de conexión de la válvula de servicio y la línea de refrigerante5.2 Longitud Requerida de la Línea de Refrigerante5.3 Aislamiento de la Línea de Refrigerante	05 05 05
 5.1 Tamaños de conexión de la válvula de servicio y la línea de refrigerante 5.2 Longitud Requerida de la Línea de Refrigerante 5.3 Aislamiento de la Línea de Refrigerante 5.4 Reutilización de Líneas de Refrigerante Existentes 	05 05 05
 5.1 Tamaños de conexión de la válvula de servicio y la línea de refrigerante 5.2 Longitud Requerida de la Línea de Refrigerante 5.3 Aislamiento de la Línea de Refrigerante 5.4 Reutilización de Líneas de Refrigerante Existentes 6 RUTA DE LA LÍNEA DE REFRIGERANTE 	05 05 05 05

8 COMPROBACIÓN DE FUGAS EN LA LÍNEA DE REFRIGERANTE	
8.1 Comprobar las Fugas	80
9 EVACUACIÓN	
9.1 Evacuar las líneas de refrigerante y la bobina interior	80
10 VÁLVULAS DE SERVICIO	
10.1 Abrir las válvulas de servicio	09
11 ELÉCTRICO - BAJO VOLTAJE	
11.1 Longitud máxima del cable de bajo voltaje	10
11.2 Diagramas de Conexión de Bajo Voltaje	10
11.3 Diagramas de Cableado del Termostato	10
12 ELÉCTRICO - ALTO VOLTAJE	
12.1 Fuente de alimentación de alto voltaje	14
12.2 Interruptor de desconexión de alto voltaje	14
12.3 Tierra de Alto Voltaje	14
13 INICIO	
13.1 Inicio de Sistema	14
14 AJUSTE DE CARGA DEL SISTEMA	
14.1 Carga: Método de Pesaje	15
14.2 Carga de subenfriamiento y ajuste de refrigerante	
en enfriamiento (temperatura exterior superior a 55 °F)	15
15 FUNCIONAMIENTO DEL SISTEMA Y SOLUCIÓN DE PROBLEMAS	5
15.1 Descripción de la lógica de control	18
15.2 Sensores (termistores/transductor de presión)	18
15.3 Válvula ecualizadora de presión (PEV)	18
15.4 Descripción de Desfrost (solo bomba de calor)	18
15.5 Descripción del calentador del cárter del compresor	19
15.6 Funcionamiento de la válvula inversora (solo bomba de calor)	19
15.7 Funciones de Protección	19
15.8 Tabla de Códigos de Falla	20
15.9 Tabla de verificación de puntos de parámetros	2122
15.10 Descripción general del tablero de control 15.11 Solución de problemas de códigos de error	24
15.11 Soldcion de problemas de codigos de enor 15.12 Tablas de Relación de Temperatura y Resistencia (para sensores)	30
15.13 Tablas de relación de Temperatura y Resistencia (para sensor T5)	31

1 SEGURIDAD

Importante: Este documento contiene un diagrama de cableado e información de servicio. Esto es de propiedad del cliente y permanecerá con esta unidad. Devolver la información de servicio al finalizar el trabajo.

⚠ PRECAUCIÓN

Esta información está destinada a personas que posean antecedentes adecuados de experiencia eléctrica y mecánica. Cualquier intento de reparar un Aire Acondicionado central puede resultar en lesiones personales y/o daños a la propiedad. El fabricante o vendedor no será responsable de la interpretación de esta información, ni puede asumir ninguna responsabilidad en relación con su uso.

⚠ ADVERTENCIA

VOLTAJE PELIGROSO

Incumplir esta advertencia puede provocar daños a la propiedad, lesiones personales graves o la muerte. Desconectar toda la energía eléctrica, incluidas las desconexiones remotas, antes de realizar el mantenimiento. Seguir los procedimientos adecuados de bloqueo/etiquetado para asegurar que la alimentación no se active inadvertidamente.

ACEITE REFRIGERANTE

Cualquier intento de reparar un producto de aire acondicionado central puede provocar daños a la propiedad, lesiones personales graves o la muerte. Estas unidades utilizan refrigerante R-410A que funciona a presiones entre un 50 y un 70 % más altas que el R-22. Utilizar únicamente equipos de servicio aprobados para R-410A. Los cilindros de refrigerante están pintados de color "rosa" para indicar el tipo de refrigerante y pueden contener un tubo de "inmersión" para permitir la carga de refrigerante líquido en el sistema. Todos los sistemas R-410A con compresores de velocidad variable y usan un aceite PVE (FV50S o equivalente) que absorbe fácilmente la humedad de la atmósfera. Para limitar esta acción "higroscópica", el sistema debe permanecer sellado siempre que sea posible. Si un sistema ha estado abierto a la atmósfera durante más de 4 horas, se debe reemplazar el aceite del compresor. Nunca romper una aspiradora con aire y siempre cambiar los secadores cuando abra el sistema para reemplazar los componentes.

FUGAS DE ALTA CORRIENTE

Incumplir esta advertencia podría provocar daños a la propiedad, lesiones personales graves o la muerte. La conexión a tierra es esencial antes de conectar el suministro eléctrico.

VÁLVULAS DE SERVICIO

Si no sigue esta advertencia, se liberará abruptamente la carga del sistema y puede producir lesiones personales y/o daños a la propiedad. Tener mucho cuidado al abrir la válvula de servicio de la línea de líquido. Girar el vástago de la válvula en sentido contrario a las agujas del reloj solo hasta que el vástago entre en contacto con el borde enrollado. No se requiere torsión.

⚠ ADVERTENCIA

SOLDADURA REQUERIDA

Si hay fallas en inspeccionar las líneas o no se utilizan las adecuadas herramientas de servicio, se pueden producir daños en el equipo o lesiones personales. Si utiliza líneas de refrigerante existentes, asegurarse de que todas las uniones estén soldadas.

⚠ CAUTION

CONTIENE REFRIGERANTE

Si no sigue los procedimientos adecuados, pueden producir enfermedades o lesiones personales o daños graves al equipo. Los sistemas contienen aceite y refrigerante a alta presión. Recuperar el refrigerante para aliviar la presión antes de abrir un sistema.

CONEXIÓN A TIERRA REQUERIDA

Si no se inspeccionan o no se utilizan las herramientas de servicio adecuadas, pueden producir daños en el equipo o lesiones personales. Volver a conectar todos los dispositivos de puesta a tierra. Todas las partes de este producto que son capaces de conducir corriente eléctrica están conectadas a tierra. Se deben devolver a su posición original y se deben sujetar correctamente si los cables, tornillos, correas, abrazaderas, tuercas o arandelas de conexión a tierra que se usan para completar una ruta a tierra se retiran para el servicio.

UNIDAD INTERIOR REQUERIDA

La unidad interior debe combinarse con TXV. Y el modelo de TXV se puede cambiar según la capacidad del sistema.

SUPERFICIE CALIENTE

Puede causar quemaduras menores a severas. El incumplimiento de esta precaución podría resultar en daños a la propiedad o lesiones personales. No tocar la parte superior del compresor.

⚠ ADVERTENCIA

Este producto puede exponerlo a productos químicos, incluidos el plomo y sus componentes, que el estado de California reconoce como causantes de cáncer y defectos de nacimiento u otros daños reproductivos. Para obtener más información, visite www.

P65Advertencias.ca.gov

⚠ INFORMACIÓN

El fabricante recomienda instalar solo sistemas interiores y exteriores combinados aprobados. Todos los sistemas divididos del fabricante tienen clasificación AHRI solo con sistemas interiores TXV. Algunos de los beneficios de instalar sistemas divididos para interiores y exteriores combinados aprobados son la máxima eficiencia, el rendimiento óptimo y la mejor confiabilidad general del sistema.

2 CONSIDERACIONES DE UBICACIÓN DE LA UNIDAD

2.1 Dimensiones de la Unidad

Dimensiones de la unidad					
Modelos	H x W x L (pulgadas)				
24/36	24-15/16 x 29-1/8 x 29-1/8				
48/60	33-3/16 x 29-1/8 x 29-1/8				

Tabla 2-1

Los valores de peso de la unidad están en la caja de cartón.

Al montar la unidad exterior en un techo, asegurar que el techo soporte el peso de la unidad. Se recomienda seleccionar adecuadamente el aislamiento para evitar la transmisión de sonido o vibraciones a la estructura del edificio.

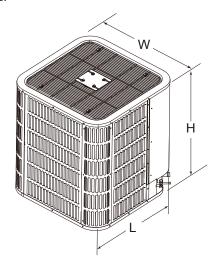
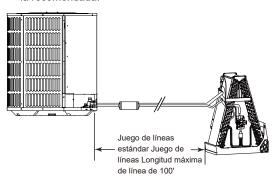


Figura 2-1


2.2 Límites de Tuberías de Refrigerante

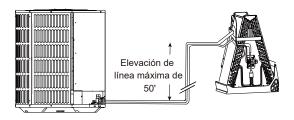

Modelo de	Línea	Linea de	Longi	tud total e	quivalent	te - Pies	
capacidad del sistema	de líquido	succión	25	50	75	100	
	Pulga	da O.D	Separació	n Vertical I	Máxima - Pi	ies	
		3/4 Std.	25	50	45	40	
2 Ton	3/8 *	5/8 Opt.	25	50	45	40	
3 Ton	3/8 *	5/8 Opt.	25	50	50	50	
0 1011	3/0	0/0	3/4 Std.	25	50	50	50
4 Ton	3/8 *	7/8 Std.	25	50	50	40	
4 1011	3/0	3/4 Opt.	25	50	50	40	
		7/8 Std.	25	50	50	40	
5 Ton	3/8 *	3/4 Opt.	25	50	50	40	
		1 1/8 Opt.	25	40	N/A	N/A	

Table 2-2

* Se recomienda el tamaño de línea estándar; N/A: Aplicación no recomendada; Carga de refrigerante: consulte la Sec. 14

- Longitud máxima equivalente de línea = 100 pies.
- Longitud equivalente vertical máxima = 50 pies.
- Utilzar únicamente los diámetros de línea indicados en la Tabla 2-2.
- Si los conjuntos de líneas de succión tienen más de 50 pies, no use una línea de succión más grande que la recomendada.

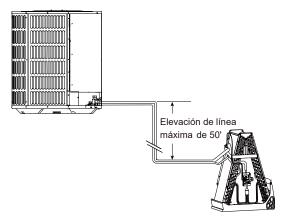


Figura 2-2

2.3 Restricciones de ubicación

Asegurar que el área de descarga superior no este restringida en al menos 60 pulgadas por encima de la unidad.

No ubicar la unidad ext. cerca de los dormitorios ya que los sonidos normales de funcionamiento pueden ser objetables.

Ubicar la unidad para permitir el espacio adecuado para el flujo de aire, el cableado, las líneas de refrigerante y la capacidad de servicio sin obstrucciones.

Colocar la unidad ext. a un mínimo de 12" de cualquier pared o arbustos circundantes para garantizar un flujo de aire adecuado.

Se debe proporcionar un espacio libre de 24 pulgadas frente a la caja de control (paneles de acceso) y cualquier otro lado que requiera servicio.

Mantener una distancia de 24 pulgadas entre las unidades.

Colocar la unidad donde el agua, la nieve o el hielo del techo o saliente no puedan caer directamente sobre ella.

Utilizar esta unidad únicamente en espacios bien ventilados y asegúrese de que no haya obstrucciones que puedan impedir el flujo de aire dentro y fuera de la unidad.

No instale esta unidad en las siguientes ubicaciones:

- · Lugares con aceite mineral.
- Lugares con ambientes salinos, como lugares junto al mar.
- Lugares con atmósferas sulfurosas, como cerca de fuentes termales naturales.
- Donde haya electricidad de alto voltaje, como en ciertos lugares industriales.
- En vehículos o embarcaciones, como camiones o transbordadores.
- Donde pueda ocurrir exposición a aire aceitoso o muy húmedo, como cocinas.
- En la proximidad de fuentes de radiación electromagnética, como transmisores de alta frecuencia u otros dispositivos de radiación de alta potencia.

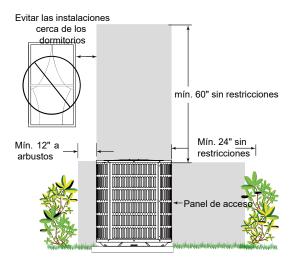


Figura 2-3

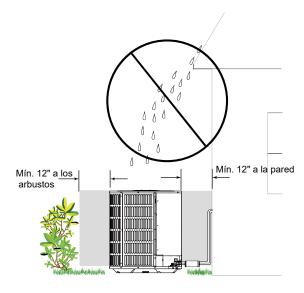


Figura 2-4

Consideraciones para climas fríos (solo bomba de calor)

\bigcirc NOTA

Tomar precauciones para las unidades que se instalen en áreas donde se produzca acumulación de nieve y temperaturas bajo cero prolongadas.

- Las unidades deben elevarse entre 3 y 12 pulg por encima de la plataforma o techo, según el clima local. Esta altura adicional permite el drenaje de la nieve y hielo derretidos durante el ciclo de descongelación antes de su recongelación. Asegurar que los orificios de drenaje en la bandeja de la base de la unidad no estén obstruidos, puede impedir el drenaje del agua descongelada (Fig. 2-5).
- Si es posible, evitar los lugares propensos a acumulaciones de nieve. Si no es posible, instalar una barrera contra la acumulación de nieve alrededor de la unidad para evitar la acumulación de nieve en los costados de la unidad.

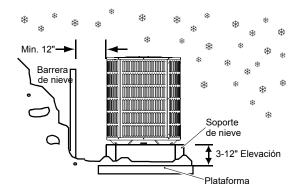


Figura 2-5

3 PREPARACIÓN DE UNIDAD

3.1 Preparar la Unidad para la Instalación

- Comprobar que no haya daños e informar de inmediato al transportista de cualquier daño que encuentre en la unidad (Fig. 3-1).
- El puerto de carga se puede utilizar para garantizar que la carga de refrigerante se haya retenido durante el envío.

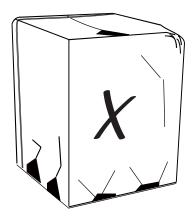


Figura 3-1

4 CONFIGURACIÓN DE LA UNIDAD

4.1 Instalación de Plataforma

Al instalar la unidad en una plataforma de soporte, como una losa de hormigón, tenga en cuenta lo siguiente:

- La plataforma debe ser al menos 1 o 2 veces más grande que la unidad en todos los lados.
- La plataforma debe estar separada de cualquier estructura.
- La plataforma debe estar nivelada.
- La plataforma debe estar lo suficientemente alta sobre el nivel del suelo para permitir el drenaje.
- La ubicación de la plataforma debe cumplir con los códigos nacionales, estatales y locales.

□ NOTA

Estas instrucciones están destinadas a proporcionar un método para sujetar un sistema a una losa de cemento como procedimiento de seguridad para áreas de mucho viento. Consultar los códigos locales para conocer los métodos y protocolos de amarre.

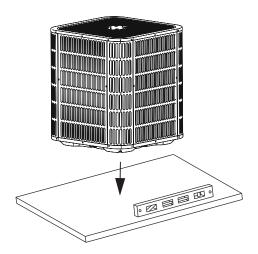
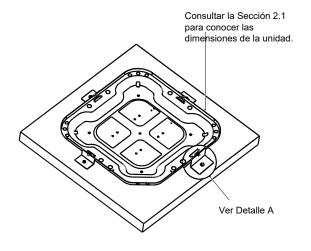



Figura 4-1

(No exceder los tornillos de 3/8" de largo)

Soportes suministrados: 2" de ancho, 1/16" de espesor, altura según se requiere.

Tornillos autorroscantes #7 X 3/8"

Tornillos para hormigón con cabeza de arandela hexagonal de 1/4" x 1-1/2" (se necesita un orificio de 3/16". El orificio debe ser 1/4" más profundo que el empotramiento del sujetador)

Figura 4-2

5 CONSIDERACIONES SOBRE LA LÍNEA DE REFRIGERANTE

5.1 Tamaños de conexión de la válvula de servicio y la línea de refrigerante

Modelos	Línea de succión	Línea de líquido	Tilnea de Tilnea de	
24/36	3/4	3/8	3/4	3/8
48/60	7/8	3/8	7/8	3/8

Tabla 5-1

5.2 Longitud Requerida de la Línea de Refrigerante

Determinar la longitud de línea requerida (Fig. 5-1). Consultar la Sección 2.2.

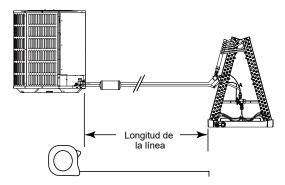


Figura 5-1

5.3 Aislamiento de la Línea de Refrigerante

♀ NOTA

La Línea de Succión siempre debe estar aislada. NO permitir que la línea de líquido y la línea de succión entren en contacto directo (metal con metal).

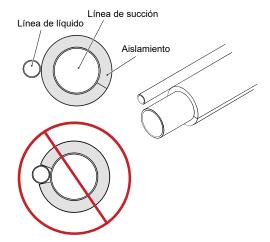


Figura 5-2

5.4 Reutilización de Líneas de Refrigerante Existentes

⚠ PRECAUCIÓN

Si usa líneas de refrigerante existentes, asegurar que todas las uniones estén soldadas.

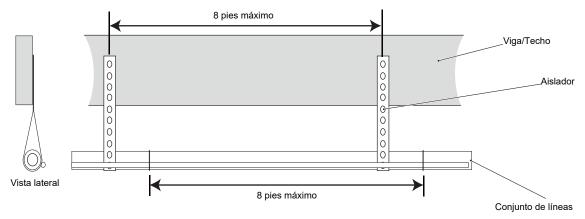
Para aplicaciones de re-acondicionamiento, donde se utilizarán las líneas de refrigerante existentes, se deben tomar las siguientes precauciones:

- Asegurar que el tamaño de las líneas de refrigerante sea el correcto. Consultar la Sección 2.2 y la Tabla 5-1.
- Asegurar que las líneas de refrigerante no tengan fugas, ácido ni aceite.

♀ NOTA

El fabricante recomienda instalar solo sistemas interiores y exteriores combinados aprobados. Todos los sistemas split del fabricante tienen clasificación AHRI solo con sistemas interiores TXV. Los beneficios de instalar sistemas split para interiores y exteriores aprobados son la máxima eficiencia, el rendimiento óptimo y la mejor confiabilidad general del sistema.

6 RUTA DE LA LÍNEA DE REFRIGERANTE


6.1 Precauciones

\bigcirc NOTA

Tomar precauciones para evitar el ruido dentro de la estructura del edificio debido a la transmisión de vibraciones de las líneas de refrigerante. Por ejemplo:

- Cuando las líneas de refrigerante deban sujetarse a las vigas del piso u otros marcos de una estructura, usar soportes colgantes de aislamiento.
- Los ganchos de aislamiento también se deben usar cuando las líneas de refrigerante se instalan en espacios con montantes o en techos cerrados.
- Cuando las líneas de refrigerante atraviesan una pared o un umbral, deben aislarse y aislarse.
- Aislar las líneas de todos los conductos.
- Minimizar el número de giros de 90°.

Cumplir con los códigos nacionales, estatales y locales al aislar conjuntos de líneas de vigas, paredes u otros elementos estructurales.

Asegurar la línea de succión de las vigas usando aisladores cada 8 pies. Asegurar la línea de líquido directamente a la línea de succión usando cinta, alambre u otro método apropiado cada 8 pies.

Aislamiento de Viga/Techo

Figura 6-1

Asegurar la línea de succión de las vigas usando aisladores cada 8 pies. Asegurar la línea de líquido directamente a la línea de succión usando cinta, alambre u otro método apropiado cada 8 pies.

Aislamiento En Paredes

Figura 6-2

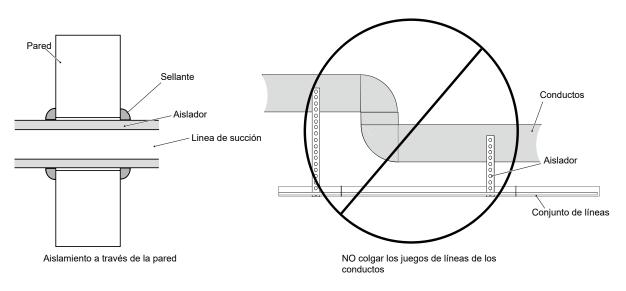


Figura 6-3

7 SOLDADURA DE LA LÍNEA DE REFRIGERANTE

7.1 Soldadura Fuerte de las Líneas de Refrigerante

1. Retirar las tapas o tapones. Usar una herramienta de desbarbado para desbarbar los extremos de la tubería. Limpiar las superficies internas y externas de la tubería con una tela de esmeril.

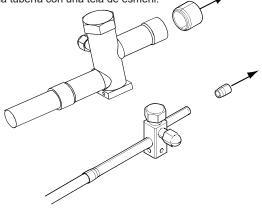


Figura 7-1

 Retirar la tapa de la toma de presión de ambas válvulas de servicio.

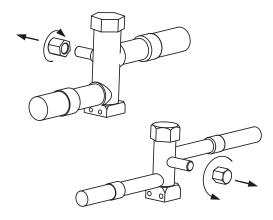


Figura 7-2

3. Eliminar las líneas de refrigerante y la bobina interior con nitrógeno seco.

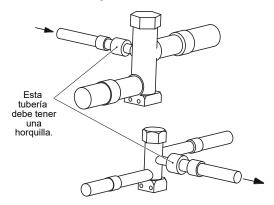


Figura 7-3

4. Envolver un trapo húmedo alrededor del cuerpo de la válvula para evitar daños por calor y continuar con la eliminación de nitrógeno seco (Fig. 7-4).

Soldar las líneas de refrigerante a las válvulas de servicio.

Continuar con la eliminación de nitrógeno seco. No retirar el trapo mojado hasta que se haya completado toda la soldadura.

Retirar el trapo húmedo antes de detener la eliminación de nitrógeno seco.

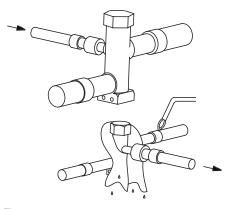


Figura 7-4

5. Reemplazar las tapas de presión después de que las válvulas de servicio se hayan enfriado.

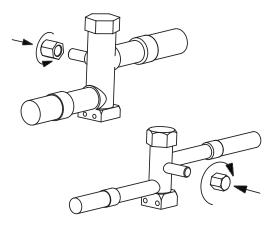


Figura 7-5

8 COMPROBACIÓN DE FUGAS EN LA LÍNEA DE REFRIGERANTE

8.1 Comprobar las Fugas

 Presurizar las líneas de refrigerante y la bobina del evaporador a 150 PSIG al usar nitrógeno seco

150 PSIG

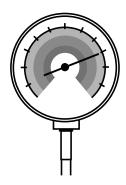


Figura 8-1

 Buscar fugas utilizando una solución jabonosa o burbujas en cada lugar soldado.

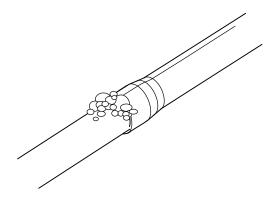


Figura 8-2

9 EVACUACIÓN

9.1 Evacuar las Líneas de Refrigerante y la Bobina Interior

₽ NOTA

No abrir las válvulas de servicio hasta que las líneas de refrigerante y la verificación de fugas de la bobina interior y la evacuación estén completas.

 Evacuar hasta que el indicador de micrón indique no más de 350 micras, luego cerrar la válvula de la bomba de vacío.

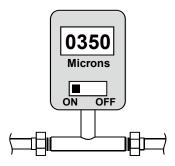


Figura 9-1

 Observar el indicador de micras. La evacuación está completa si el indicador de micrones no supera las 500 micras en un (1) minuto.

Una vez finalizada la evacuación, apagar la bomba de vacío y el indicador de micras, y cerrar las válvulas en el juego de indicadores del colector.

Figura 9-2

10 VÁLVULAS DE SERVICIO

10.1 Abrir las Válvulas de Servicio

⚠ PELIGRO

Se debe tener mucho cuidado al abrir la válvula de servicio de la línea de líquido. Girar en sentido contrario al reloj hasta que el vástago de la válvula toque el borde enrollado. No se requiere torsión. Si no se sigue esta advertencia, se liberará abruptamente la carga del sistema y se pueden producir lesiones personales y/o daños a la propiedad.

♀ NOTA

La comprobación de fugas y la evacuación deben completarse antes de abrir las válvulas de servicio. El juego de válvulas soldadas deben utilizarse para comprobar fugas y la aspiración. Usar el puerto de succión separado para este proceso resultará en la pérdida de carga.

La válvula de servicio de succión debe abrirse primero ANTES de abrir la válvula de servicio de líquido.

- 1. Retirar la tapa de la válvula de servicio (Fig. 10-1).
- Insertar completamente la llave hexagonal y girar en sentido contrario al reloj hacia la izquierda hasta que el vástago de la válvula toque el borde enrollado (aproximadamente cinco (5) vueltas).
- Volver a colocar la tapa de la válvula para evitar fugas. Apretar con los dedos más 1/6 de vuelta adicional.
- 4. Repetir los PASOS 1 3 para la válvula de servicio de líquido.

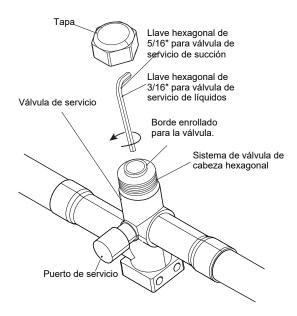


Figura 10-1

11 ELÉCTRICO - BAJO VOLTAJE

11.1 Longitud Máxima del Cable de Bajo Voltaje

La Tabla 11-1 define la longitud total máxima del cableado de bajo voltaje desde la unidad exterior a la unidad interior y al termostato.

24 Voltajes - Tamaño de Cable	Máx. Longitud de cable
18 AWG	150 Ft.
16 AWG	225 Ft.
14 AWG	300 Ft.

Tabla 11-1

11.2 Diagramas de Conexión de Bajo Voltaje

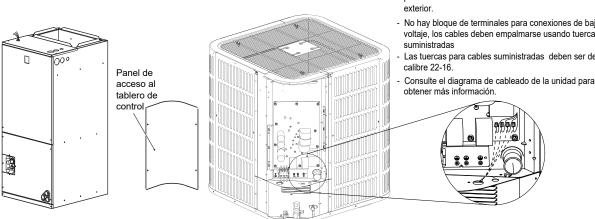


Figura 11-1 Conexiones de la unidad de bajo voltaje

11.3 Diagramas de Cableado del Termostato

- Asegurar que la fuente de alimentación coincida con la placa de identificación del equipo.
- El cableado eléctrico y la conexión a tierra del equipo deben cumplir con los códigos locales.
- El cableado de bajo voltaje debe ser un conductor mínimo de 18 AWG.
- "----" Instalado.
- Calefacción auxiliar de una etapa conformada por un termostato 2H
- Calefacción auxiliar de dos etapas conformada por termostato 3H
- W1: La primera etapa del calor auxiliar eléctrico
- W2: La segunda etapa del calor auxiliar eléctrico
- La señal W de la unidad exterior está conectada a la calefacción auxiliar eléctrica o a la calefacción auxiliar eléctrica de la primera etapa.

- La conexión de bajo voltaje debe realizarse dentro del panel de acceso del tablero de control de la unidad
- No hay bloque de terminales para conexiones de bajo voltaje, los cables deben empalmarse usando tuercas
- Las tuercas para cables suministradas deben ser de

Las líneas discontinuas en los siguientes diagramas de cableado del termostato se refieren al cableado opcional (cableado para la función de deshumidificación pasiva y/o calefacción eléctrica). Para el cableado del termostato, consultar el Manual del propietario del termostato.

El terminal B debe conectarse con el cableado del termostato (O/B). La válvula contraria se energiza en modo calefacción.

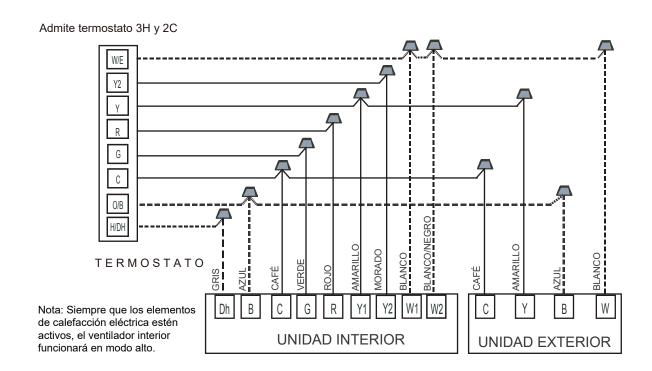


Figura 11-2

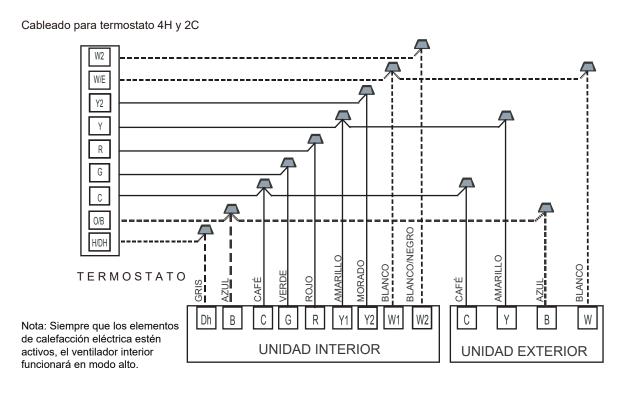
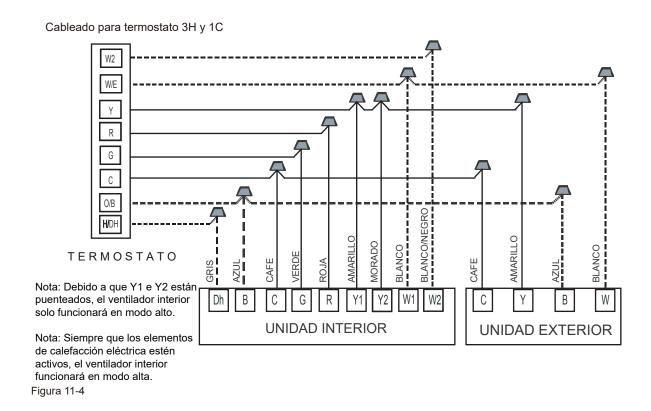



Figura 11-3

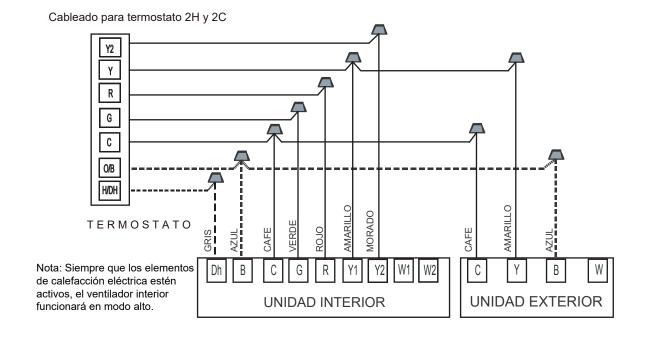


Figura 11-5

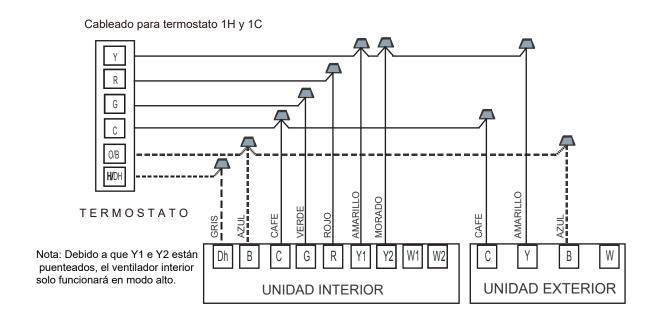


Figura 11-6

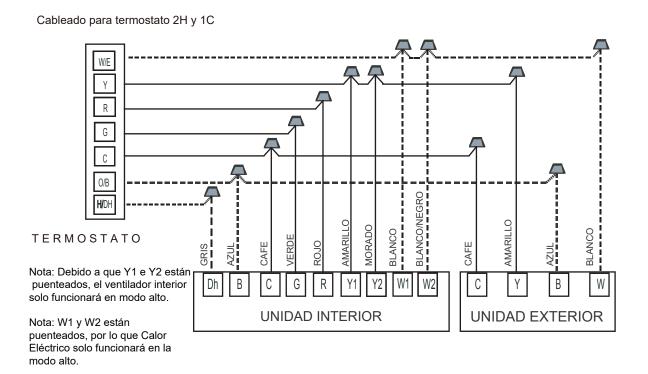


Figura 11-7

12 ELÉCTRICO - ALTO VOLTAJE

12.1 Fuente de Alimentación de Alto Voltaje

№ PELIGRO

COMPONENTES ELÉCTRICOS

Durante la instalación, prueba, servicio y resolución de problemas de este producto, puede ser necesario trabajar con componentes eléctricos activos, si existe incumplimiento de todas las precauciones de seguridad eléctrica expuesto a componentes eléctricos puede provocar la muerte o lesiones graves.

La fuente de alimentación de alto voltaje debe coincidir con la placa de identificación del equipo (208/230V, 1PH, 60Hz).

♀ NOTA

El cableado de alimentación debe cumplir con los códigos nacionales, estatales y locales.

Seguir las instrucciones del diagrama de cableado de la unidad localizado al interior del panel de acceso a la caja de control y consultar el diagrama de cableado en este IOM.

12.2 Interruptor de Desconexión de Alto Voltaje

Instalar un interruptor de desconexión separado en la unidad exterior.

Utilizar un conducto eléctrico flexible suministrado para el cableado de alto voltaje.

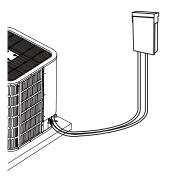


Figura 12-1

12.3 Tierra de Alto Voltaje

Conectar a el cable a tierra la unidad exterior según los requisitos de los códigos nacionales, estatales y locales.

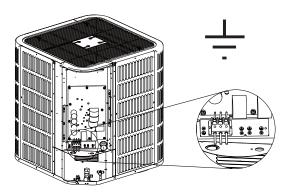


Figura 12-2

13 INICIO

13.1 Inicio de Sistema

- 1. Asegurar que se hayan completado las Secciones 7, 8, 9, 10, 11 y 12.
- Configurar el termostato del sistema en OFF (APAGADO).

Figura 13-1

3. Encender la desconexión para aplicar conexión eléctrica a las unidades interior y exterior.

Figura 13-2

4. Tras la instalación inicial de la unidad, si se usa el calentador del cárter del compresor y la temperatura ambiente exterior es inferior a 70 °F esperar una (1) hora antes de encender la unidad.

Figura 13-3

5. Ajustar el termostato del sistema en ON (ENCENDIDO).

Figura 13-4

14 AJUSTE DE CARGA DEL SISTEMA

14.1 Carga: Método de Pesaje

Utilizar el método de pesaje en la instalación inicial o en cualquier momento en que se reemplace una carga del sistema. El método de pesaje también se puede usar cuando no hay energía disponible en el sitio del equipo o las condiciones de operación (temperaturas interior/exterior) no están dentro del rango para verificar con el método de carga de subenfriamiento.

Modelo	Carga de Sistema	Multiplicador de carga para interconectar la longitud de la tubería de refrigerante.
2 Ton	7 lbs 2 oz	0.6 oz/ft
3 Ton	7 lbs 2 oz	0.6 oz/ft
4 Ton	10 lbs 3 oz	0.6 oz/ft
5 Ton	10 lbs 3 oz	0.6 oz/ft

Tabla 14-1

\bigcirc NOTA

El cableado de alimentación debe cumplir con los códigos nacionales, estatales y locales.

Instalaciones nuevas: Cálculo de la carga adicional para líneas de más de 15 pies.

1.	Longitud total de la línea (pies) = _		_(a)
2.	Juego de líneas estándar (ft)	=_	15	_(b)
3.	(a) menos (b)	=_		_(c)
4.	Multiplicador de refrigerante	=_	0.6 oz/ft	_(d)
5.	Añadir Refrigerante (c*d)	=_		_(e) [;]
*s	el juego de lineas es menor a	15 f	t,	
Řε) = 0 eparaciones de sistemas sellad rga total del sistema.	os -	– Cálculo	de I
1.	Longitud Total de la linea (ft)	=_		_(a)
2.	Jueog de lineas estándar (ft)	=_	15	_(b)
3.	(a) menos (b)	=_		_(c)
4.	Multiplicador de Refrigerante	=_	0.6 oz/ft	_(d)
5.	Añadir Refrigerante (c*d)	=_		_(e) [,]
6.	Carga de Fabrica (nombre de pla	ic a)_		_(f)
7.				

♀ NOTA

*Si el juego de lineas es menor de 15 ft, (e) = 0

El único modo aprobado para validar la carga del sistema es mientras se encuentra en el "Modo Forzado" de Enfriamiento. La temperatura exterior debe estar entre 55 °F y 120 °F y la temperatura interior debe mantenerse entre 70 °F y 80 °F.

14.2 Carga de subenfriamiento y ajuste de refrigerante en enfriamiento (temperatura exterior superior a 55 °F)

1. Comprobar la temperatura ambiente exterior.

El subenfriamiento (en modo de enfriamiento (cooling)) es el único método recomendado para cargar por encima de los 55 °F de temperatura ambiente exterior.

Para temperaturas ambiente exteriores inferiores a 55 °F, utilice el método de pesaje de carga.

\bigcirc NOTA

Es importante cuando estamos en temporada de primavera o de verano cargar con precisión el sistema en el modo de refrigeración cuando la temperatura ambiente exterior sea superior a 55 °F

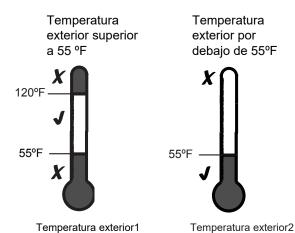
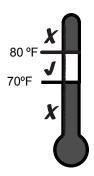



Figura 14-1

Para obtener los mejores resultados, la temperatura interior debe mantenerse entre 70 °F y 80 °F durante la instalación.

Temperatura interior

Figura 14-2

- 2. Asegurar que se hayan completado las secciones 7, 8, 9, 10, 11, 12 y 13.
- 3. Estabilizar el sistema.

Después de iniciar el sistema en modo de enfriamiento, presionar brevemente el botón "FORCE" (FORZAR) y aparecerá el símbolo " |- ". El sistema puede tardar 10 minutos en activarse. Operar el sistema durante un mínimo de veinte (20) minutos.

🖳 NOTA

Después de un período de estabilización de veinte (20) minutos funcionando al 100 % de su capacidad (es decir, una vez que el compresor alcanza la frecuencia que se muestra en la Tabla 14-2), mantener el funcionamiento continuo mientras se ajusta la carga de refrigerante. Después de ajustar, operar el sistema durante un mínimo de cinco (5) minutos para que el sistema se estabilice; de lo contrario, repetir el paso 3.

Frecuencia del compresor en Modo Force (Forzado) en refrigeración (Cooling)							
Capacidad ODU 2TON 3TON 4TON 5TON							
Frecuencia (HZ) 56 76 56 66							

Tabla 14-2

Figura 14-3

4. Calcular el valor de sobrecalentamiento (Según la Tabla 14-3)

Medida de la T° de la línea de succión = _____°F

Medida de la Presión de línea de succión = _____°F

Calcular valor de sobrecalentamiento = _____°F

♀ NOTA

Comprobar el sobrecalentamiento y seleccionar el subenfriamiento correcto, consultar la Tabla 14-5. Se recomienda mantener el sobrecalentamiento entre 10 y 18 °F si se utiliza una unidad interior de otro fabricante.

Calcular valor de subenfriamiento (Según Tabla 14-4)
 Medida de la T° de línea de líquido. = _____°F
 Medida de Presión de línea de líquido= _____°F
 Calcular valor de subenfriamiento= _____°F

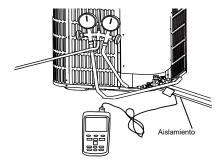


Figura 14-4

\mathbb{Q} NOTA

Si el valor de subenfriamiento calculado es inferior al valor de subenfriamiento de diseño (Tabla 14-5), agregar refrigerante. Repetir los pasos 3 a 5.

Si el sobrecalentamiento está fuera de rango, consultar la sección de solución de problemas.

T°de		Sobrecalentamiento final (°F)							
succión	6	8	10	12	14	16	18	20	22
(°F)		Presi	ón ma	nomé	trica d	e succ	ión (P	SI)	
40	105	101	97	93	89	86	82	78	75
42	109	105	101	97	93	89	86	82	78
44	114	109	105	101	97	93	89	86	82
46	118	114	109	105	101	97	93	89	86
48	123	118	114	109	105	101	97	93	89
50	128	123	118	114	109	105	101	97	93
52	133	128	123	118	114	109	105	101	97
54	138	133	128	123	118	114	109	105	101
56	143	138	133	128	123	118	114	109	105
58	148	143	138	133	128	123	118	114	109
60	153	148	143	138	133	128	123	118	114
62	159	153	148	143	138	133	128	123	118
64	164	159	153	148	143	138	133	128	123
66	170	164	159	153	148	143	138	133	128
68	176	170	164	159	153	148	143	138	133
70	182	176	170	164	159	153	148	143	138
72	188	182	176	170	164	159	153	148	143

Tabla 14-3 Gráfico de refrigerante R-410A: sobrecalentamiento final

T°el		Subenfriamiento final (°F)						
líquido	6	7	8	9	10	11	12	13
(°F)	F	resión	mano	métrica	de líq	uido (F	PSI)	
55	173	176	179	182	185	188	191	195
60	188	191	195	198	201	204	208	211
65	204	208	211	215	218	221	225	229
70	221	225	229	232	236	239	243	247
75	239	243	247	251	255	259	262	266
80	259	262	266	270	275	279	283	287
85	279	283	287	291	295	300	304	309
90	300	304	309	313	318	322	327	331
95	322	327	331	336	341	346	351	355
100	346	351	355	360	365	370	376	381
105	370	376	381	386	391	397	402	407
110	397	402	407	413	418	424	430	435
115	424	430	435	441	447	453	459	465
120	453	459	465	471	477	483	489	496
125	483	489	469	502	508	515	521	528

Tabla 14-4 Gráfico de refrigerante R-410A: subenfriamiento final

Subenfriamiento de diseño						
Modelo	Subenfriamiento/°F	Recalentamiento/°F				
24K/36K	10±2	10—18				
24N/30N	8±2	7—10				
401/	8±2	9—18				
48K	6±2	7—9				
0014	8±2	8—18				
60K	6±2	6—8				

Tabla 14-5

Nota:Los valores de la primera línea son aplicables para unidades interiores con TXV ajustable o TXV no ajustable.

Los valores de la segunda línea son aplicables para unidades interiores con TXV no ajustable.

6. Ajustar el nivel de refrigerante para lograr la presión manométrica adecuada.

\bigcirc NOTA

Agregar refrigerante si la lectura de subenfriamiento de la Tabla 14-4 es inferior al valor diseñado (Tabla 14-5).

- Conectar los manómetros a la botella de refrigerante y a la unidad como se ilustra (Fig. 14-5).
- Purgue todas las mangueras.
- Tanque abierto.
- Dejar de agregar refrigerante cuando el subenfriamiento coincide con el valor de diseño (Tabla 14-5).

Recuperar refrigerante si la lectura de subenfriamiento de la Tabla 14-4 es mayor que el valor de diseño (Tabla 14-5).

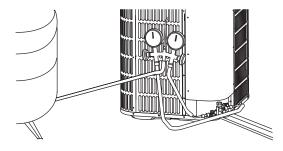


Figura 14-5

- 7. Estabilizar el sistema.
- Esperar 5 minutos para que el sistema se estabilice entre los ajustes.

₽ NOTA

Cuando el subenfriamiento coincide con el valor de diseño (Tabla 14-5), el sistema está correctamente cargado.

- · Retirar los medidores.
- Volver a colocar las tapas de los puertos de servicio para evitar fugas. Apretar con los dedos más 1/6 de vuelta adicional.
- Registrar la información del sistema como referencia (Tabla 14-6). Registrar las presiones y temperaturas del sistema después de completar la carga.

Descripción	Value
N° de modelo exterior	
Medición de Ambiente Exterior	°F
Medición de Ambiente Interior	°F
Medición de T° de línea de líquido	°F
Medición de Línea de succión	°F
Presión manométrica de líquido de T°	PSIG
Presión del manómetro de succión	PSIG

Tabla 14-6

15 FUNCIONAMIENTO DEL SISTEMA Y SOLUCIÓN DE PROBLEMAS

15.1 Descripción de la Lógica de Control

- El sistema de velocidad variable adopta el mismo control de 24VAC que cualquier bomba de calor convencional.
- La velocidad del compresor se controla en función de las presiones del serpentín monitoreadas por el transductor de presión de la unidad. Para garantizar una capacidad estable y adecuada, la velocidad del compresor se modulará en relación con la presión del evaporador durante la operación de refrigeración y en relación con la presión de condensación durante la operación de calefacción. La presión objetiva se puede ajustar automáticamente en función funcionamiento del compresor para que se pueda lograr una capacidad óptima. La presión objetiva se puede ajustar manualmente (SW4) para lograr una mejor deshumidificación y demandas de capacidad.

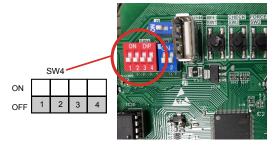


Figura 15-1

J -		
Interruptor	Descripción	
0.44.4	ON	No usado
SW4-1	OFF*	Debe configurarse en la posición "OFF"
014/4 0	ON	No usado
SW4-2	OFF*	Debe configurarse en la posición "OFF"
SW4-3	ON	Salida de capacidad adaptativa deshabilitada
5004-3	OFF*	Salida de capacidad adaptativa habilitada
SW4-4	ON	Refrigeración/calefacción acelerada
SVV4-4	OFF*	Refrigeración/calefacción normal

Tabla 15-1

- La función de capacidad adaptativa es una "función de autoaprendizaje" que permite que se adapte un rango de temperaturas objetivo de la bobina para un mejor funcionamiento de la unidad y ciclos cortos reducidos.
- La función de refrigeración/calefacción acelerada cambia la temperatura objetivo inicial de la bobina para proporcionar un "mejor confort" al aumentar la capacidad de la unidad.

15.2 Sensores (termistores/transductor de presión)

- T3 = T° bobina Exterior (Tabla 15-14)
 - Protección de alta/baja T°
 - Control de ventilador exterior (modo de refrigeración)
 - Control de descongelación (modo calefacción)
- T4 = T° ambiente exterior (Tabla 15-14)
 - Permiso de condiciones de funcionamiento
 - Permiso de condición de descongelación
 - Control de ventilador exterior (modo calefacción)
- T5 = T° de descarga del compresor (Tabla 15-15)
 - Protección de alta/baja temperatura
 - Válvula de expansión electrónica (EEV) (ODU/modo de calefacción solamente)
- TF = T° del tablero de control (Tabla 15-15)
 - Protección de alta T° del inversor
- Transductor de presión
 - Control de frecuencia del compresor
 - Control de válvula de expansión electrónica (EEV) (solo modo de calefacción)
 - Protección de alta presión (modo de calefacción)
 - Protección de baja presión (modo de refrigeración)

15.3 Válvula Ecualizadora de Presión (PEV)

Se utiliza para equilibrar la presión en el sistema antes de que funcione el compresor.

15.4 Descripción de Desfrost (solo bomba de calor)

- El control de descongelamiento por demanda (DDC) monitorea la temperatura de la bobina de la ODU usando un termistor (T3). Un segundo termistor (T4) controla la temperatura ambiente exterior. Con base en estos parámetros, así como en el tiempo de funcionamiento acumulativo y la alta presión, el DDC calcula el inicio adecuado del descongelamiento.
- Se requiere cualquiera de las siguientes tres condiciones para comenzar con el descongelamiento
 - 1. La diferencia de temperatura calculada entre la temperatura exterior (T4) y la temperatura de la bobina (T3) se denomina Delta T. Después de alcanzar Delta T, continúa durante 3 minutos.
 - T4 ≥ 39°F, Delta T = 18°F
 - T4 ≥ 30°F, Delta T = 16°F
 - T4 ≥ 19°F, Delta T = 14°F
 - Cuando T4 < 19 °F, T3 < 9 °F, el tiempo de funcionamiento acumulativo del compresor es ≥ 80 minutos.

^{*}Predeterminado de fábrica

- Después de alcanzar el "Tiempo mínimo de funcionamiento" (MRT). MRT se basa en la T° ambiente exterior (T4), por ejemplo:
 - MRT es de 4 horas cuando: T4 < 23°F</p>
 - MRT es de 2 horas cuando: 23°F ≤ T4 < 40°F</p>
- Después de que la temperatura de saturación de alta presión caiga por debajo de 82°F durante 20 minutos.
- El descongelamiento terminará una vez que la temperatura de la bobina exterior (T3) alcance los 4 °F durante un período de 1 minuto o el tiempo de descongelamiento haya excedido los 8 minutos.
- Los ajustes de terminación de descongelamiento (SW5) ofrecen diferentes opciones de termino de descongelamiento para uno mejorado para diferentes condiciones geográficas y exteriores.

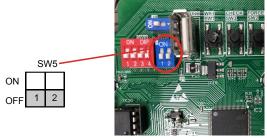


Figura 15-2

Elección de defrosting	SW5-1	SW5-2	Observaciones
ON	El tiempo de funcionamiento se reduce en un 10%	Descongelación extendida por 60 segundos	
OFF	OFF	OFF	Por Defecto
Observaciones	Observaciones	Observaciones	

Tabla 15-2

- Descongelación manual:
 - El sistema debe tener calor y haber estado funcionando durante un mínimo de 8 minutos.
 - Presionar el botón "Force" en la placa del inversor durante 6 segundos para comenzar la descongelación forzada.
 - 3. Espere aproximadamente 40 segundos para que se inicie el descongelamiento.
 - 4. Una vez que se inicie el descongelamiento, la pantalla indicará "dF".
 - La prueba de descongelamiento terminará automáticamente, después de lo cual la pantalla indicará la velocidad de funcionamiento.
 - Si se requiere una segunda prueba de descongelamiento, repetir los pasos 2 a 5 después de 5 minutos.

15.5 Descripción del Calentador del Cárter del Compresor

La migración de refrigerante durante el ciclo de OFF (APAGADO) puede resultar en arranques ruidosos, por lo tanto, se utiliza un calentador de cárter (CCH) para minimizar la migración de refrigerante y, por lo tanto, minimizar el ruido de arranque y/o el "lavado" de los cojinetes. Todos los CCH deben instalarse en la mitad inferior de la carcasa del compresor. Su propósito es calentar el compresor durante el ciclo de OFF (APAGADO), expulsando el refrigerante del compresor. Después de períodos prolongados de apagado en climas fríos, se recomienda permitir que el CCH esté energizado durante al menos 12 horas antes de la operación del compresor aplicando voltaje de línea a la bomba de calor con el termostato OFF (APAGADO).

- · La operación CCH energiza:
 - La primera vez que se aplica voltaje de línea y la T° de descarga del compresor T5 < 53.6 °F.
 - El compresor deja de funcionar durante 3 horas (T° ambiente exterior T4 < 41 °F o T° de descarga del compresor T5 < 53,6 °F).
- La operación CCH desactiva:
 - T° de descarga del compresor T5 ≥ 60.8°F.2.
 El compresor comienza a funcionar.

15.6 Funcionamiento de la Válvula Inversora (solo bomba de calor)

 Válvula inversora energizada durante el modo de calefacción y desenergizada en el modo de enfriamiento.

\bigcirc NOTA

Durante un funcionamiento de calor en la primera operación, la unidad funcionará aproximadamente 1 minuto en refrigeración para acumular presión para cambiar la válvula de inversión.

15.7 Funciones de Protección

- Protección de temperatura de bobina exterior (T3)
 - i. If T3 > 143.6°F, el compresor está desenergizado.
 - ii. If T3 < 129.2°F, el compresor está energizado
- Protección de T° de ambiente (T4)
 - i. Si 40°F≤T4<125°F, la unidad puede operar en refrigeración.
 ii. Si 5°F≤T4 < 86°F, la unidad puede funcionar en calefacción (heating mode).
 iii. Si T4 < 5°F, la bomba de calor proporcionará un control de
 - iii. Si T4 < 5°F, la bomba de calor proporcionará un control de 24 V a la unidad interior que energiza la calefacción eléctrica (si está instalada).
- Protección de temperatura de descarga (DT) (T5)
 - i. Si DT > 239°F durante el modo de enfriamiento, el compresor se detendrá.
 - ii. Si DT < 194°F durante el modo de enfriamiento, el compresor se reiniciará.
 - iii. Si DT > 221 °F durante el modo de calefacción, el compresor se detendrá.
 - iv. Si DT < 167 °F durante el modo de calefacción, el compresor se reiniciará.
- Protección de alta presión (HP) (Interruptor de presión mecánico de apertura/cierre)
 - High Pressure Switch opens at P > 580 PSIG, the compressor and outdoor fan stop.
 - ii. High Pressure Switch closes at P < 435 PSIG, the compressor and outdoor fan restart.
- Protección de baja presión (LP)
 - Si la presión baja < 43,5 PSI durante 5 minutos durante el modo de refrigeración, el compresor y el ventilador exterior se detendrán. El sistema intentará volver a funcionar después de 6 minutos.
 - Si la temperatura de condensación. Tc < temp. ambiente exterior. T4 durante el modo de calefacción, el compresor y el ventilador exterior se detendrán.
- Protección de temperatura del tablero de control (TF)
 - i. Si TF > 176 °F, el compresor y el ventilador exterior se detendrán.
 - ii. Si TF < 154 °F, el compresor y el ventilador exterior se reiniciarán.

15.8 Tabla de Códigos de Falla

Código	Descripción de la falla (sensor)
C3 El sensor de la bobina está en falla de enfriamiento (T3)	
E4	Falla del sensor de temperatura (T3, T4, T5, TF)
E5	Protección de alto/bajo voltaje
E6	Falla del motor del ventilador de DC (solo aplicable en 48K/60K)
E7	El sensor de descarga del compresor tiene una falla (T5)
E9	Falla EEPROM
H0	Fallo de comunicación en el chip de control principal
H5*	Protección 5 veces (P2) en 100 minutos, bloqueo del sistema
H8	Fallo del transductor de presión (PT)
P0	Protección de temperatura del tablero de control (TF)
P1	Protección del interruptor de alta presión (HPS)
P2	Protección de baja presión en refrigeración o calefacción (PT)
P3	Protección contra sobrecorriente del compresor
P4	Protección de alta T°de descarga del compresor (T5)
P5	Protección de T° de la bobina en refrigeración (T3)
P8	Protección contra huracanes/tifones del motor del ventilador de DC
PH	Protección contra sobrecalentamiento de descarga baja
F1	Protección interruptor de alta presión (HPS)
L0-L9	La protección del módulo IPM
AtL	Temperatura de ambiente Limitada

Códigos de estado de protección del sistema**

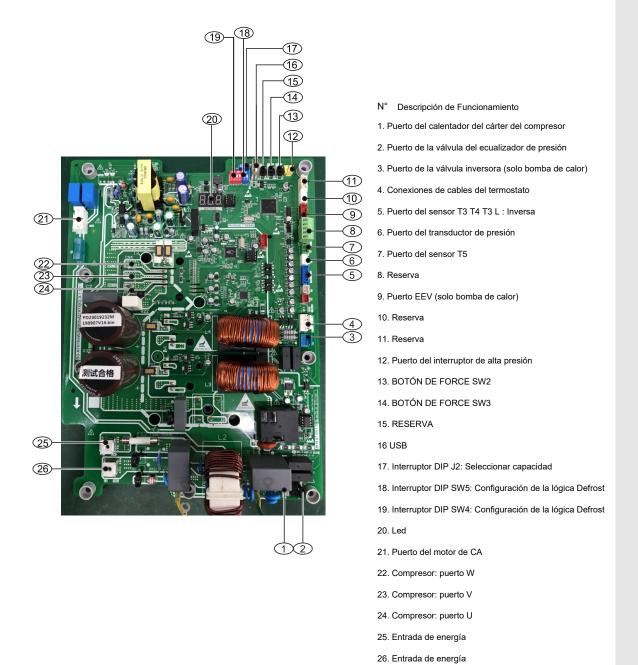
ŀ	Modo de funcionamiento forzado
L	Indicación de funcionamiento en condiciones limitadas T3
D	Indicación de funcionamiento en condiciones limitadas T5
Р	Indicación de funcionamiento en condiciones limitadas en relación al compresor
F	Indicación de funcionamiento en condiciones limitadas de TF
С	Indicación de funcionamiento en condiciones limitadas actuales
U	Indicación de funcionamiento en condiciones limitadas de bajo voltaje
А	Indicación de funcionamiento en modo de aceite de retorno
dF	Indicación de funcionamiento en el modo de descongelación (solo bomba de calor)

Tabla 15-3

^{*} Falla requiere un reinicio completo

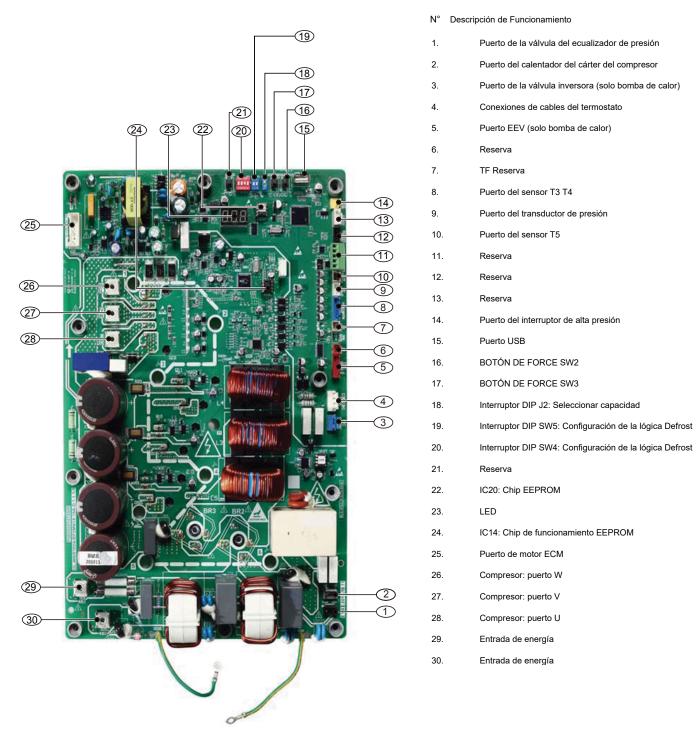
^{**} Si el primer dígito que se muestra en el LED del tablero de control es uno de los siguientes códigos de protección (seguido de dos dígitos numéricos que muestran la frecuencia actual del compresor en Hz), la unidad continuará funcionando pero en una condición limitada. La única excepción es cuando el sistema está en modo de descongelación, que solo muestra "dF" (sin dígitos numéricos a continuación).

15.9 Tabla de Verificación de Puntos de Parámetros


- Para mostrar los parámetros del sistema, presionar el botón "Check" para indexar la serie de parámetros disponibles. La
 primera vez que presione el botón "Check", mostrará la secuencia y después de 1 segundo mostrará el valor del
 parámetro. Si presiona el botón "Check" nuevamente, mostrará la siguiente secuencia. Consultar la Figura 15-3 y 15-4
 para conocer la ubicación del botón de verificación en el tablero de control.
- Estado normal, los últimos dos dígitos se mostrarán en las siguientes condiciones
 - i. la unidad no funciona (modo de espera(Standy Mode)); "temperatura ambiente exterior".
 - ii. Unidad en funcionamiento; muestra la "frecuencia de funcionamiento del compresor".
- Después de 20 segundos en el mismo parámetro, la visualización volverá al estado normal.
- Si una protección del sistema está activa, el primer dígito mostrará el "código de estado".

No.	Punto de control de contenido	Ejemplo	Observaciones
0	Capacidad de la unidad exterior	НЗ	H3=3 ton
			0 modo de espera,
1	Modo de unidad exterior	2	2 cooling,
			3 heating(Solo bomba de calor)
2	Velocidad del compresor en la un ext (Hz)	66	
3	T3 (T° de la bobina exterior) (°F)		
4	T4 (temperatura ambiente exterior) (°F)		
5	T5 (temperatura ambiente exterior) (°F)		
6	Reservado		
7	Reservado		
8	Tf (temperatura del módulo) (°F)		
9	Pe (presión de evaporación) (PSI)		Presión de succión baja
10	Pc (presión de condensación) (PSI)		Gran Presión alta
11	Objetivo de la temperatura de evaporación. (usar solo para el modo de enfriamiento) (°F)		
12	Te (temperatura de evaporación) (°F)		
13	Tcs objetivo de la temperatura de condensación. (usar solo para modo calefacción) (°F)		
14	Tc (T° de condensación) (°F)		
15	Objetivo del recalentamiento de descarga del compresor(usar solo para el modo de calefacción) (°F)		
16	Sobrecalentamiento de descarga del compresor (°F)		
17	Aperturas de EEV		Solo bomba de calor
18	Velocidad del ventilador		
19	Energia del compresor (A)		
20	Voltaje CA de entrada de energía (V)		
21	Voltaje DC (V) de entrada del compresor		
22	Tiempo de funcionamiento continuo del compresor (min)		
23	Código de ultima falla	00	
24	Versión de Software	01	
25	Observaciones""		

Tabla 15-4


15.10 Descripción General del Tablero de Control

Tablero de control principal para el modelo 24/36 ODU

^{*}La foto se proporciona solo con fines de referencia. El diseño y los componentes variarán según las especificaciones de la unidad.

Figura 15-3

*La foto se proporciona solo con fines de referencia. El diseño y los componentes variarán según las especificaciones de la unidad.

Figura 15-4

15.11 Solución de Problemas de Códigos de Error

Código de Error	Descripción (Sensor)
P1	Protección del interruptor de alta presión (HPS)
P5	Protección de la temperatura de la bobina del condensador (T3) en cooling
P3	Protección contra sobrecorriente del compresor

Tabla 15-5

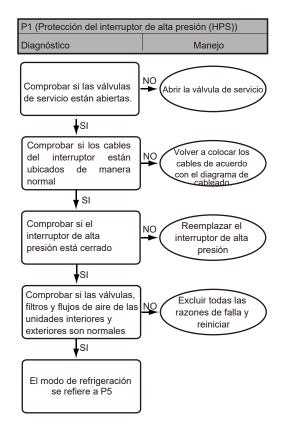


Figura 15-5

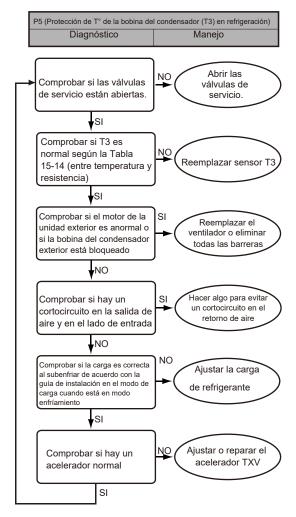
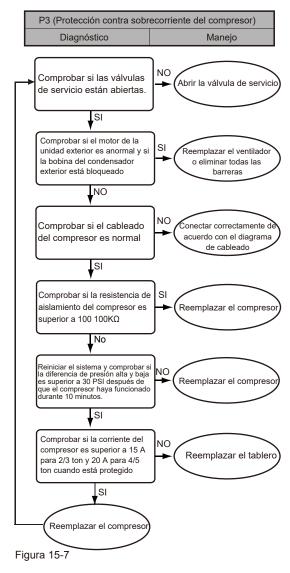



Figura 15-6

Código de error	Descripción
	Protección de temperatura del radiador (TF) de módulo alto

Tabla 15-6

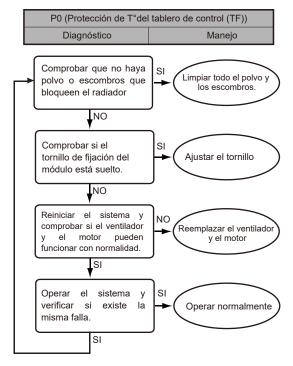


Figura 15-8

Código de Error	Descripción
P2	Protección de baja presión (PT) en refrigeración y calefacción
H5	Bloqueo del sistema, protección 5 veces (P2) en 100 minutos
P4	Protección contra alta temperatura de descarga del compresor (T5)

Tabla 15-7

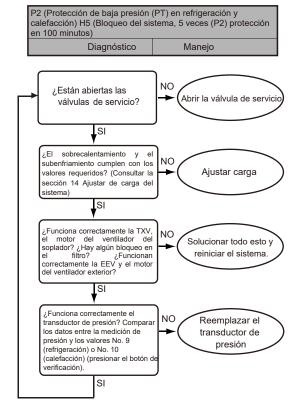


Figura 15-9

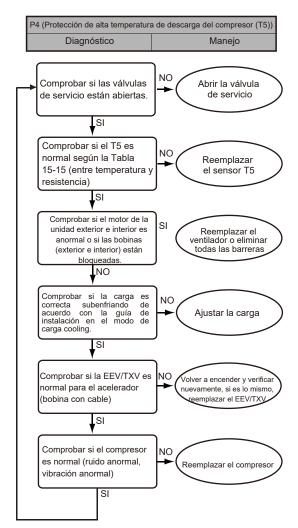


Figura 15-10

Código de error Descripción

Código de error	Descripción
E4	Falla del sensor de temperatura (T3, T4, T5, TF)
H8	Falla del transductor de presión (PT)
F1	Falla del interruptor de alta presión (HPS)

Tabla 15-8

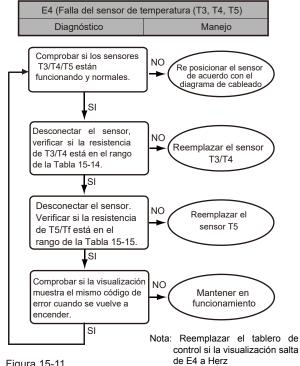


Figura 15-11

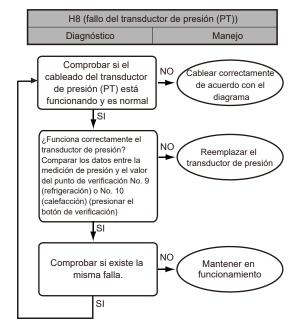


Figura 15-12

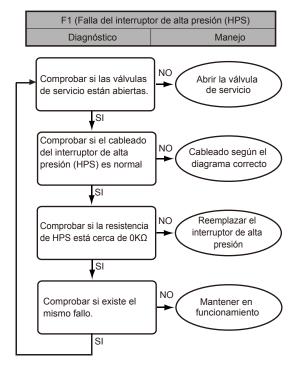


Figura 15-13

Código de Erro	r Descripción
C3	El sensor de la bobina del condensador (T3) tiene una falla en enfriamiento
E7	El sensor de descarga del compresor (T5) tiene una falla

Tabla 15-9

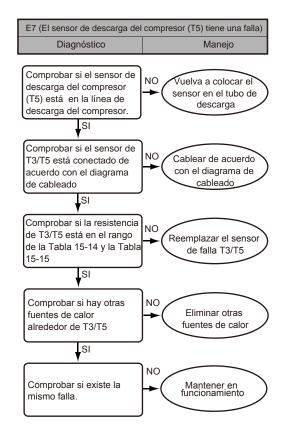


Figura 15-15

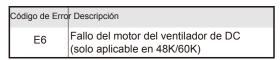


Tabla 15-10

Si el código de error E6 aparece ocasionalmente, no es necesaria ninguna acción. El sistema se reiniciará automáticamente después de 6 minutos.

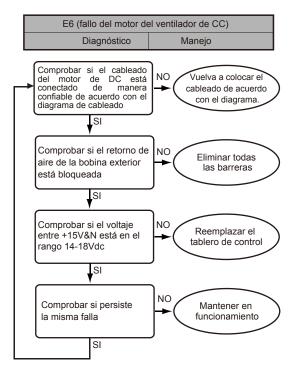


Figura 15-16

Código de Erro	Descripción
E9	Falla EEPROM
H0	Fallo de comunicación chip control principal
E5	Protección de alto/bajo voltaje

Tabla 15-11

Si los códigos de error E9/H0/E5 aparecen ocasionalmente y después de que el sistema se reinicia y funciona normalmente después de que se restablece la fuente de alimentación, no es necesario realizar ninguna acción. De lo contrario, el sistema debe ser revisado.

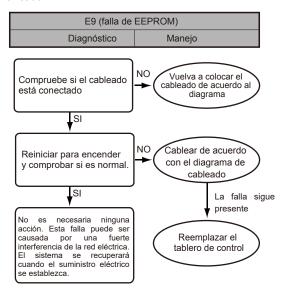


Figura 15-17

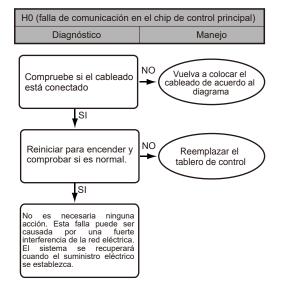
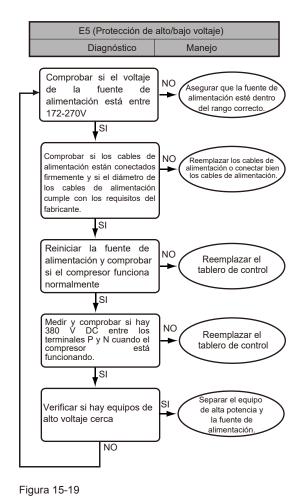



Figura 15-18

Nota: Consulte el diagrama de cableado para conocer la ubicación de P&N

Código de erro	Descripción
L0-L9	Protección del módulo IPM

Tabla 15-12

Cuando los códigos de error L0-L9 aparecen ocasionalmente, no es necesaria ninguna acción. El sistema se reiniciará automáticamente después de 6 minutos.

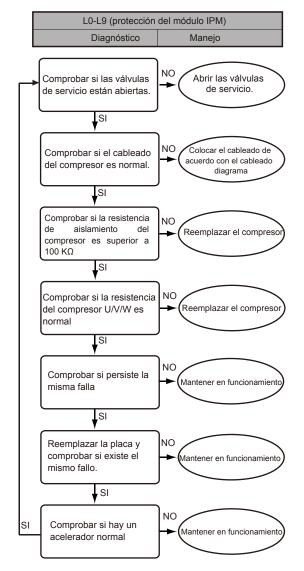


Figura 15-20

Código de erro	Descripción
AtL	Temperatura ambiente limitada

Tabla 15-13

\bigcirc NOTA

Cuando la temperatura ambiente vuelva a estar dentro del rango operativo, el sistema se recuperará automáticamente.

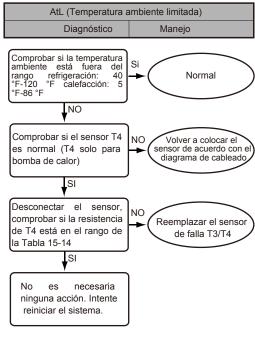


Figura 15-21

15.12 Tablas de Relación de Temperatura y Resistencia (para sensores)

TEMP F	TEMP C	RESISTENCIA kΩ	Voltajes DC	TEMP F	TEMP C	Resistencia $k\Omega$	Voltajes DC
-5	-20.6	107.732	4.65	90	32.2	7.225	2.36
0	-17.8	93.535	4.60	95	35.0	6.401	2.21
5	-15.0	79.521	4.54	100	37.8	5.683	2.07
10	-12.2	67.795	4.47	105	40.6	5.057	1.93
15	-9.4	57.948	4.39	110	43.3	4.509	1.79
20	-6.7	49.652	4.30	115	46.1	4.028	1.67
25	-3.9	42.645	4.21	120	48.9	3.606	1.55
30	-1.1	36.710	4.10	125	51.7	3.233	1.43
40	4.4	27.386	3.86	130	54.4	2.902	1.32
45	7.2	23.732	3.73	135	57.2	2.610	1.22
50	10.0	20.610	3.59	140	60.0	2.350	1.13
55	12.8	17.939	3.45	145	62.8	2.119	1.04
60	15.6	15.648	3.30	150	65.6	1.914	0.96
65	18.3	13.681	3.15	155	68.3	1.731	0.88
70	21.1	11.987	2.99	160	71.1	1.574	0.82
75	23.9	10.527	2.83	165	73.9	1.416	0.75
80	26.7	9.265	2.67	170	76.7	1.276	0.68
85	29.4	8.172	2.52				

Tabla 15-14 para T3, T4

15.13 Tablas de relación de Temperatura y Resistencia (para sensor T5)

TEMP F	TEMP C	RESISTENCIA kΩ	VOLTAJE S DC	TEMP F	TEMP C	RESISTENCIA kΩ	VOLTAJES DC
-5	-20.6	600.134	4.93	140	60.0	13.643	3.14
0	-17.8	505.551	4.92	145	62.8	12.359	3.03
5	-15	427.463	4.91	150	65.6	11.214	2.91
10	-12.2	362.739	4.89	155	68.3	10.227	2.80
15	-9.4	308.891	4.87	160	71.1	9.308	2.68
20	-6.7	265.398	4.85	165	73.9	8.485	2.56
25	-3.9	227.481	4.83	170	76.7	7.746	2.45
30	-1.1	195.601	4.80	175	79.4	7.105	2.34
35	1.7	168.707	4.77	180	82.2	6.504	2.23
40	4.4	146.695	4.74	185	85.0	5.963	2.13
45	7.2	127.258	4.70	190	87.8	5.474	2.02
50	10.0	110.707	4.66	195	90.6	5.032	1.92
55	12.8	96.572	4.61	200	93.3	4.645	1.83
60	15.6	84.465	4.56	205	96.1	4.280	1.73
65	18.3	74.411	4.51	210	98.9	3.949	1.64
70	21.1	65.408	4.45	215	101.7	3.648	1.56
75	23.9	57.634	4.39	220	104.4	3.383	1.48
80	26.7	50.904	4.32	225	107.2	3.133	1.40
85	29.4	45.258	4.24	230	110.0	2.904	1.32
90	32.2	40.152	4.16	235	112.8	2.694	1.25
95	35.0	35.699	4.08	240	115.6	2.503	1.18
100	37.8	31.807	3.99	245	118.3	2.334	1.12
105	40.6	28.398	3.89	250	121.1	2.172	1.06
110	43.3	25.506	3.80	255	123.9	2.024	1.00
115	46.1	22.861	3.70	260	126.7	1.888	0.95
120	48.9	20.529	3.59	265	129.4	1.767	0.90
125	51.7	18.47	3.48	270	132.2	1.651	0.85
130	54.4	16.708	3.37	275	135.0	1.544	0.80
135	57.2	15.085	3.26	280	137.8	1.446	0.76

Tabla 15-15 para T5

FA	LLAS DEL SISTEMA	A R	COMPENS	TABLERO TON I FUSIFATO	RES CONTRE S LE	RES TOLO CA	VENTILAT.	RE RE	ADIADOR	REF B CONTE	C	REF. CO SOBRECA	RESTR	ATABOADO NE CO O NE	1	V E NA		DEF	DESENSOR	5	SE	F.\ N S O	EF SENSOR'S	1 S O R H F F F	5
	La visualización no muestra nada	C H	P P			E	S S																		
	El sistema no inicia SS	C H		P P	P P		S S																		S S
SISTEMA	Capacidad insuficiente	C						P P	P P	P P		P P			S	S		S S	S S				S S		
	La visualización no es normal al ejecutar	C H					P P																		
	Refrigeración cuando se requiere calefacción	H C		Р					Р	Р			S	Р			S								
	P1	Н			Р			Р	Г	Г		Р	S	P	0				c						
	P2/H5	C H			P							P	•	_	S S				S S						
	P3	C H						Р		Р	Р		S S	P P											
CIRCUITO	P5	C H							Р	Р			S	S S							S				
DE	P0	C							P P	P P	S S														
REFRIGER	P4	С										P P			S	S							S S		
ANTE	PH	C											P P		Р						S		S S		
	C3(T3 ubicado por falla)	С											F			Р					P		P		S
	E7(T5 ubicado por falla)	C H																		S	S		P		
	ATL(T° ambiente. más allá de la licencia)	C H																				S			
	E4	C H																			P P	P P	P P	P P	
	H8	C H																		P P					
	F1	С																			S				P P
	E6	C					S S			P P															
	P6	С					3			P P															
O CONTROL	P8	C																							
JOHNOL	L0-L9	C				S	P P																		
	E9	C					P P																		
	H0	C					P P																		
	E5	C H	P P				S S																		

Tabla 15-16

C-Refrigeración (Cooling) REV.-Válvula inversora H-Calefacción (Heating) PT-Transductor de presión P-Causas Primarias T3- sensor de T° de bobina Exterior S-Causas Secundarias

T4-TSensor de T° ambiente T5- Sensor de T° de descarga del compresor Comp.-Compresor RES.-Restricciones Tf- Sensor de T° de la aleta del módulo del radiador

PS-P Interruptor de Alta Presión

REF.-Refrigeración DEF.-Defectuoso RES I.D. FLUJO DE AIRE: quizás falla del motor del ventilador o del filtro o de

CIR.-Circuito la capacidad del ventilador.

RES O.D. FLUJO DE AIRE - Quizás falla del motor o del ventilador del EEV-Válvula de expansión electrónica

condensador o de recirculación o un bloqueo de la bobina. RES O.D. RADIADOR: quizás falla del bloqueo el radiador.

